Modulating Protein-DNA Interactions by Post-Translational Modifications at Disordered Regions

نویسندگان

  • Dana Vuzman
  • Yonit Hoffman
  • Yaakov Levy
چکیده

Intrinsically disordered regions, particularly disordered tails, are very common in DNA-binding proteins (DBPs). The ability of disordered tails to modulate specific and nonspecific interactions with DNA is tightly linked to their being rich in positively charged residues that are often non-randomly distributed along the tail. Perturbing the composition and distribution of charged residues in the disordered regions by post-translational modifications, such as phosphorylation and acetylation, may impair the ability of the tail to interact nonspecifically with DNA by reducing its DNA affinity. In this study, we analyzed datasets of 3398 and 8943 human proteins that undergo acetylation or phosphorylation, respectively. Both modifications are common on the disordered tails of DBPs (3.1 ± 0.2 (0.07 ± 0.007) and 2.0 ± 0.2 (0.02 ± 0.003) acetylation and phosphorylation sites per tail (per tail residue), respectively). Phosphorylation sites are abundant in disordered regions and particularly in flexible tails for both DBPs and non-DBPs. While acetylation sites are also frequently occurred in the disordered tails of DBPs, in non-DBPs they are often found in ordered regions. This difference may indicate that acetylation has different function in DBPs and non-DBPs. Post-translational modifications, which often take place at disordered sites of DBPs, can modulate the interactions of proteins with DNA by changing the local and global properties of the tails. The effect of the modulation can be tuned by adjusting the number of modifications and the cross-talks between them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic protein-DNA recognition: beyond what can be seen.

Traditionally, specific DNA recognition is thought to rely on static contacts with the bases or phosphates. Recent results, however, indicate that residues far outside the binding context can crucially influence selectivity or binding affinity via transient, dynamic interactions with the DNA binding interface. These regions usually do not adopt a well-defined structure, even when bound to DNA, ...

متن کامل

Structured and disordered regions cooperatively mediate DNA-binding autoinhibition of ETS factors ETV1, ETV4 and ETV5

Autoinhibition enables spatial and temporal regulation of cellular processes by coupling protein activity to surrounding conditions, often via protein partnerships or signaling pathways. We report the molecular basis of DNA-binding autoinhibition of ETS transcription factors ETV1, ETV4 and ETV5, which are often overexpressed in prostate cancer. Inhibitory elements that cooperate to repress DNA ...

متن کامل

The roles of intrinsic disorder in orchestrating the Wnt-pathway.

The canonical Wnt-pathway plays a number of crucial roles in the development of organism. Malfunctions of this pathway lead to various diseases including cancer. In the inactivated state, this pathway involves five proteins, Axin, CKI-α, GSK-3β, APC, and β-catenin. We analyzed these proteins by a number of computational tools, such as PONDR(r)VLXT, PONDR(r)VSL2, MoRF-II predictor and Hydrophobi...

متن کامل

Intrinsically Disordered Proteins in Bcl-2 Regulated Apoptosis

Intrinsic cell death is mediated by interaction between pro-apoptotic and pro-survival proteins of the B-cell lymphoma-2 (Bcl-2) family. Members of this family are either intrinsically disordered or contain intrinsically disordered regions/domains that are critical to their function. Alternate splicing and post-translational modifications can determine the extent of these disordered regions and...

متن کامل

Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state

Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2012